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Abstract

Let f : GF (2)n → GF (2) be a monotone Boolean function. Associated to f is the Cayley
graph X whose vertices correspond to points of GF (2)n and whose edges correspond to pairs
of vectors (v, w) whose sum is in the support of f . The spectrum of X (the set of eigenvalues
of its adjacency matrix) can be computed in terms of the Walsh-Hadamard transform of f .
We show that if f is atomic, the adjacency matrix of X is singular if and only if the support
of f has an even number of elements. We ask whether it is true that for every even monotone
function the adjacency matrix of the Cayley graph must be singular. We give an example in
dimension n = 6 to show that the answer to this question is no. We use Sage to compute
some examples of monotone Boolean functions, their Cayley graphs, and the graph spectra.
We include some interesting characterizations of monotone functions. We give some conditions
on a monotone function that imply that the function is not bent. Finally, we ask whether it is
true that no even monotone function is bent, for n > 2.
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1 Introduction

Monotone Boolean functions have applications to theoretical computer science, voting theory, and
many other areas. Bent functions are useful in cryptography in the construction of stream ciphers.
One motivation for this paper was to characterize monotone Boolean functions in terms of properties
of their Cayley graphs, analogous to the way that bent functions have been characterized (see A.
Bernasconi, B. Codenotti, and J. VanderKam [BCV01]). Another motivation was to try to see if
any monotone functions could also be bent. We have partial results in both of these directions in
§3 below.

In this paper we give Sage code to construct Boolean functions, to compute the adjacency matrix
and graph spectrum of a Boolean function, and to help visualize the Cayley graph of a Boolean
function.

We show (Theorem 3.1) that the set of closures of the Hasse diagram Pn on GF (2)n is in
one-to-one correspondence with the set of monotone Boolean functions on GF (2)n.

We give a compact algebraic form for any monotone Boolean function, in terms of its vectors of
least support (Theorem 3.5).

We prove (Theorem 3.6) that a monotone Boolean function supported on a single vector has a
singular Cayley graph if and only if the support of the function has an even number of elements.

We describe a class of monotone Boolean functions which are not bent (Proposition 3.7).
Some calculations with Sage led to a conjecture that every monotone Boolean function whose

support has an even number of elements has a singular Cayley graph. In Example 4.2, we give a
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counterexample in dimension n = 6, by constructing a homogeneous monotone Boolean function of
degree 4 whose Cayley graph does not have 0 in its spectrum.

We suggest the following question: is it true that no even monotone function on GF (2)n is bent,
for n > 2?

We begin with notation and by recalling some background from [Sta07], [BC99].
For a given positive integer n we may identify a Boolean function

f : GF (2)n → GF (2),

with its support
Ωf = {x ∈ GF (2)n | f(x) = 1}.

For each S ⊂ GF (2)n, let S denote the set of complements x = x+ (1, . . . , 1) ∈ GF (2)n, for x ∈ S,
and let f = f + 1 denote the complementary Boolean function. Note that

Ωc
f = Ωf ,

where Sc denotes the complement of S in GF (2)n. Let

ω = ωf = |Ωf |

denote the cardinality of the support. We call a Boolean function even (resp., odd) if ωf is even
(resp., odd). If it is more convenient, a vector in GF (2)n may also be identified with an integer in
{0, 1, . . . , 2n − 1}. Let

b : {0, 1, . . . , 2n − 1} → GF (2)n

be the binary representation ordered with least significant bit last (so that, for example, b(1) =
(0, . . . , 0, 1) ∈ GF (2)n). For convenience, we index vectors starting at 0, i.e. a vector x ∈ GF (2)3

has components x0, x1, and x2.
Let Hn denote the 2n × 2n Hadamard matrix defined by (Hn)i,j = (−1)b(i)·b(j), for each i, j

such that 0 ≤ i, j ≤ n− 1. (Here and below, b(i) · b(j) denotes the scalar product of two vectors in
GF (2)n.) Inductively, these can be defined by

H1 =

(
1 1
1 −1

)
, Hn =

(
Hn−1 Hn−1

Hn−1 −Hn−1

)
, n > 1.

The Walsh-Hadamard transform of f is defined to be the vector in R2n whose kth component is

(Hf)(b(k)) =
∑

i∈{0,1,...,2n−1}

(−1)b(i)·b(k)+f(b(i)) = (Hn(−1)f )k,

where we define (−1)f as the column vector where the ith component is

(−1)fi = (−1)f(b(i)),

for i = 0, . . . , 2n − 1. We define a Boolean function f : GF (2)n → GF (2) to be bent if the absolute
value of each component of its Walsh-Hadamard transform is 2n/2. Clearly, since each component
of the Hadamard transform must be an integer, there are no bent functions when n is odd.
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Example 1.1 (a bent, odd function). Let f : GF (2)2 → GF (2) be defined as f(x1, x2) = x1x2.
Then Ωf = {(1, 1)} so ω = 1 and f is odd. Also, f is bent because

(−1)f =


1
1
1
−1


and so

Hf = H2(−1)f =


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1




1
1
1
−1

 =


2
2
2
−2

 .

This example is “trivial” as n = 2 is so small. More interesting examples are given in Celerier’s
paper in this volume.

Example 1.2. A Boolean function of three variables cannot be bent. Let f be defined by:

x1 0 0 0 0 1 1 1 1
x2 0 0 1 1 0 0 1 1
x3 0 1 0 1 0 1 0 1

(−1)f 1 -1 1 -1 1 -1 1 -1
Hf 0 8 0 0 0 0 0 0

This function is even because

Ωf = {(0, 0, 1), (0, 1, 1), (1, 0, 1), (1, 1, 1)}, so ω = 4.

Example 1.3. A Boolean function of four variables:

x1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
x2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
x3 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
x4 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

(−1)f 1 1 1 1 1 1 1 -1 1 1 1 -1 -1 -1 -1 -1
Hf 4 4 4 -4 8 0 0 0 8 0 0 0 -4 -4 -4 4

In this example, the function is even and ω = 6.

We define the support of a vector in GF (2)n as

supp(v) = {i | vi = 1}.

For any two x, y ∈ GF (2)n, let d(x, y) denote the Hamming metric:

d(x, y) = |{0 ≤ i ≤ n− 1 | xi ̸= yi}|. (1.1)

We define the weight wt of x to be the number of non-zero coordinates of x, so d(x, y) = wt(x− y)
and wt(x) = |supp(x)|.
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Example 1.4. We use Sage to look at the example of

f(x0, x1, x2, x3) = x0x1x2 + x0x1x3 + x0x2x3 + x0x2 + x1x2x3 + x1x2 + x2x3.

First, we attach the file afsr.sage available from Celerier [Cel], then run the following commands.

Sage
sage: from sage.crypto.boolean_function import *
sage: R.<x0, x1, x2 , x3> = BooleanPolynomialRing (4)
sage: f = BooleanFunction(x0*x1*x2 + x0*x1*x3 + x0*x2*x3 + x0*x2 + x1*x2*x3 + x1*x2 + x2*x3)
sage: g = BooleanFunction ([0,0,0,0,0,1,1,1,0,0,0,1,1,1,1,1])
sage: g.is_bent ()
False
sage: is_monotone(g)
True
sage: g.truth_table(format='int')
(0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1)
sage: f.truth_table(format='int')
(0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1)
sage: g.algebraic_normal_form ()
x0*x1*x2 + x0*x1*x3 + x0*x2*x3 + x0*x2 + x1*x2*x3 + x1*x2 + x2*x3
sage: f.algebraic_normal_form ()
x0*x1*x2 + x0*x1*x3 + x0*x2*x3 + x0*x2 + x1*x2*x3 + x1*x2 + x2*x3

This shows how to construct Boolean functions in Sage using the sage.crypto module. The only
command from afsr.sage is the is monotone function1. We then show that, in spite of f and g
being constructed in different ways, they have the same values (“truth table”) and have the same
algebraic normal form2.

2 The Cayley graph

For any Boolean function f : GF (2)n → GF (2), we define the Cayley graph of f to be the undirected
graph X = (V,E) with vertices V and edges E given by:

V = GF (2)n, E = {(v, w) ∈ V × V | f(v + w) = 1}.

We shall assume throughout and without further mention that

f(0) ̸= 1,

so X has no loops and we may regard X as a simple graph. Indeed, X is an ω-regular graph having
r connected components, where

r = |GF (2)n/Span(Ωf )|.

For each vertex v ∈ V , the set of neighbors N(v) of v is given by

N(v) = v +Ωf ,

where v is regarded as a vector and the addition is induced by the usual vector addition in GF (2)n.
Let A = (Aij) be the 2n × 2n adjacency matrix of X, so

1Monotonicity is defined in §3 below.
2The ANF is discussed, for example, in [C06].
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Aij = f(b(i) + b(j)), 0 ≤ i, j ≤ 2n − 1.

The spectrum of the graph X is the multi-set of eigenvalues of the (symmetric) adjacency matrix
A

Spectrum(X) = {λk | 0 ≤ k ≤ 2n − 1}. (1.2)

We say that X is singular if the adjacency matrix A is singular.

Example 2.1. Here are some Sage commands to help visualize the Boolean function f of three
variables in Example 1.2:

Sage
sage: flist = [0,1,0,1,0,1,0,1]
sage: V = GF(2)^3
sage: Vlist = V.list()
sage: f = lambda x: GF(2)(flist[Vlist.index(x)])
sage: X = boolean_cayley_graph(f, 3)
sage: X.adjacency_matrix ()
[0 1 0 1 0 1 0 1]
[1 0 1 0 1 0 1 0]
[0 1 0 1 0 1 0 1]
[1 0 1 0 1 0 1 0]
[0 1 0 1 0 1 0 1]
[1 0 1 0 1 0 1 0]
[0 1 0 1 0 1 0 1]
[1 0 1 0 1 0 1 0]
sage: X.spectrum ()
sage: X.show(layout="circular")

The last command gives rise to the Cayley graph X of f shown in Figure 1.

Figure 1. The Cayley graph of the Boolean function of three variables from Example 1.2. (The
vertices are ordered as in that example.)

The adjacency matrix A of X is given by (1.3):
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A =



0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0


(1.3)

and the graph spectrum by

{−4, 0, 0, 0, 0, 0, 0, 4}.

Example 2.2. For the Boolean function of four variables in Example 1.3, the Cayley graph is
given in Figure 2.

Figure 2. The Cayley graph of the Boolean function of four variables from Example 1.3. (The
vertices are ordered as in that example.)

The adjacency matrix A of the graph is by (1.4):
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A =



0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 1
0 0 0 0 0 0 1 0 0 0 1 0 1 1 1 1
0 0 0 0 0 1 0 0 0 1 0 0 1 1 1 1
0 0 0 0 1 0 0 0 1 0 0 0 1 1 1 1
0 0 0 1 0 0 0 0 1 1 1 1 0 0 0 1
0 0 1 0 0 0 0 0 1 1 1 1 0 0 1 0
0 1 0 0 0 0 0 0 1 1 1 1 0 1 0 0
1 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0
0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 1
0 0 1 0 1 1 1 1 0 0 0 0 0 0 1 0
0 1 0 0 1 1 1 1 0 0 0 0 0 1 0 0
1 0 0 0 1 1 1 1 0 0 0 0 1 0 0 0
1 1 1 1 0 0 0 1 0 0 0 1 0 0 0 0
1 1 1 1 0 0 1 0 0 0 1 0 0 0 0 0
1 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0
1 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0



(1.4)

and the graph spectrum is

{−4,−4,−2,−2,−2, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 6}.

These may be computed using Sage commands, as in the last example.

We wish to relate the spectrum of the Cayley graph X to the Walsh-Hadamard transform
Hf = Hn(−1)f . Recall that (−1)f is defined to be the column vector whose ith component is
((−1)f )i = (−1)fi , where fi = f(b(i)) for i = 0, 1, ..., 2n − 1. Note that f and (−1)f are related by
the equation

f =
1

2
(1− (−1)f ),

where 1 = (1, 1, ..., 1). For k = 0, 1, ..., 2n − 1, let wk ∈ {±1}2n be the column vector whose ith
component is

(wk)i = (−1)b(k)·b(i).

Each vector wk is an eigenvector of A, since for each i,
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(Awk)i =
2n−1∑
j=0

f(b(i) + b(j))(−1)b(k)·b(j)

= (−1)b(k)·b(i)
2n−1∑
j=0

(−1)b(k)·(b(i)+b(j))f(b(i) + b(j))

= (wk)i

2n−1∑
l=0

(−1)b(k)·b(l)f(b(l))

= (wk)i

2n−1∑
l=0

(Hn)k,lfl

= (wk)i(Hnf)k (1.5)

= (wk)i(Hn
1

2
(1− (−1)f ))k

= (wk)i
1

2
(Hn1−Hf)k. (1.6)

Then Equation (1.5) proves that wk is an eigenvector of A having eigenvalue λk = (Hnf)k, where
Hn is the nth Hadamard matrix, and Equation (1.6) demonstrates the affine relationship λk =
1
2 (Hn1 − Hf)k between the spectrum of X and the Walsh-Hadamard transform. Therefore, the
spectrum of X, Spectrum(X) = {λk | 0 ≤ k ≤ 2n − 1}, is explicitly computable as an expression in
terms of f .

There is another useful expression for λk. Let Ω∗
f be the ω × n matrix whose column vectors

are the elements of Ωf :

Ω∗
f =

(
y1 . . . yω

)
, Ωf = {y1, . . . , yω}.

Then, for k ∈ {0, . . . , 2n − 1},

λk =
∑

y∈GF (2)n

(−1)b(k)·yf(y)

=
∑
y∈Ωf

(−1)b(k)·y

=
∑
y∈Ωf

(1− 2(b(k) · y mod 2))

= ω − 2wt
((
b(k)⊤Ω∗

f

)
mod 2

)
,

This proves the following result.

Lemma 2.3. An integer m belongs to Spectrum(X) if and only if there is an x ∈ GF (2)n such
that the number of y ∈ Ωf which are not orthogonal to x in GF (2)n is ω−m

2 .
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3 Monotone functions

Define a partial order ≤ on GF (2)n as follows: for each v, w ∈ GF (2)n, we say

v ≤ w

whenever we have v1 ≤ w1, v2 ≤ w2, . . . , vn ≤ wn, or equivalently supp(v) ⊆ supp(w). A Boolean
function is called monotone (increasing) if whenever we have v ≤ w then we also have f(v) ≤ f(w).
The Boolean functions from Examples 1.2 and 1.3 above are monotone.

Note that if f and g are monotone then (a) fg is monotone, (b) f + g + fg is monotone, (c)
Ωf ∩ Ωg = Ωfg, and (d) all monomials are monotone.

There are some interesting characterizations of monotone functions.

• For f : GF (2)n → GF (2) any Boolean function of n variables, let

f0(x1, . . . , xn−1) = f(0, x1, . . . , xn−1),

f1(x1, . . . , xn−1) = f(1, x1, . . . , xn−1).

The function f is monotone if and only if (a) both of the subfunctions f0 and f1 are monotone
and (b) Ωf0 ⊂ Ωf1 .

• For a given positive integer n and our partial ordering, the Hasse diagram, Pn, is the directed
graph with a vertex for each vector in GF (2)n and for which (v, w) is an edge if v ≤ w and
wt(w) = wt(v)+1 (see Example 3.4). We define a closure of a directed graph G = (V,E) to be
a set of nodes without any outgoing edges, i.e., a set of nodes, C ⊆ G, with the property that
if i ∈ C and (i, j) ∈ E, then j ∈ C. We can then count the number of monotone functions on n
variables by counting the number of closures on Pn. Closures on directed graphs have several
applications, e.g., in defense [Orl87], mining [Joh68, HC00, BZ10], and shipping [Rhy70].

Theorem 3.1. For all positive integers n, the set of closures on Pn is in one-to-one corre-
spondence with the set of monotone functions on GF (2)n.

Proof. Let n be a given positive integer and consider the set of monotone functions onGF (2)n.
We claim that the relation mapping Boolean functions on GF (2)n to their support defines a
one-to-one correspondence from monotone functions to closures on Pn. For a given Boolean
function f on GF (2)n, the relation is simply Ωf and we therefore denote the relation with Ω.
Note that Ω is a function from Boolean functions to subsets of GF (2)n, i.e., subsets of vertices
in Pn. For a monotone Boolean function f on GF (2)n, we claim that Ωf is a closure on Pn.
For given vertices v, w ∈ GF (2)n, suppose that v ∈ Ωf and that (v, w) is an edge in Pn. Then,
wi = vi + 1 for exactly one i ∈ {0, . . . , 2n − 1} and wj = vj for all j ∈ {0, . . . , 2n − 1} \ {i},
i.e., v < w. Then, because v ∈ Ωf and f is monotone, 1 = f(v) ≤ f(w) so w ∈ Ωf . Thus, Ωf

is a closure in Pn.

To see that Ω is injective, note that two Boolean functions, f and g, have f ̸= g if and only
if Ωf ̸= Ωg. To see that Ω is surjective, let C ⊆ GF (2)n be a given closure in Pn and define
fC as the function with C as a set of support vectors, i.e., for all v ∈ C, fC(v) = 1. By
definition, ΩfC = C. We claim that fC is monotone. Let v, w ∈ GF (2)n be given where
v ≤ w and v ̸= w. If fC(v) = 0 then fC(v) ≤ fC(w), trivially, so assume that fC(v) = 1,
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i.e., v ∈ C. Note that if v ≤ w and v ̸= w then for some positive integer k, there are k
components where v has a zero and w has a one. For i ∈ {0, . . . , 2n − 1}, let ei denote
the vector with one in component i and zero in all other components. Then there is a set

{i1, . . . , ik} ⊂ {0, . . . , 2n − 1} where w = v +
k∑

j=1

eij . For ℓ ∈ {0, . . . , k}, let uℓ = v +
ℓ∑

j=1

eij .

By the definition of the Hasse diagram, for ℓ ∈ {0, . . . , k − 1}, (uℓ, uℓ+1) are edges in Pn.
Then, as v = u0 ∈ C, by the closure property, uℓ ∈ C for all ℓ ∈ {0, . . . , k}, so, in particular,
fC(w) = fC(uk) = 1 ≥ fC(v).

�

• f is monotone if and only if the set {supp(v) | v ∈ Ωf} is an ideal3 of {0, 1, . . . , n− 1} (see,
for example, Kleitman [Kle69]).

For each v ∈ GF (2)n, define a monotone function f = fv to be atomic based on v if its support
consists of all vectors greater than or equal to v, i.e., if

Ωf = {x ∈ GF (2)n | v ≤ x},

where ≤ is the partial order defined above. We call f atomic if there is some v ̸= 0 such that
f is atomic based on v. Note that Example 1.2 is monotone and atomic based on (0, 0, 1) while
Example 1.3 is monotone but not atomic.

Definition 3.2. Let f : GF (2)n → GF (2) be any monotone function. We say that Γ ⊂ GF (2)n is
the least support of f if Γ consists of all vectors in Ωf which are smallest in the partial ordering ≤
on GF (2)n.

For example, the set of vectors of least support for Example 1.3 is

Γ = {(0, 1, 1, 1), (1, 0, 1, 1), (1, 1, 0, 0)}.

A monotone function is atomic if and only if it has only one vector in its least support. Here is
an interesting group-theoretical characterization of atomic monotone functions.

Proposition 3.3. Let f be a Boolean monotone function which is not a constant function. Then
f has atomic support if and only if the set of complements Ωf is a subspace of GF (2)n.

Proof. Suppose that f has atomic support based on v. Then v ≤ w for all w ∈ Ωf . Then w ≤ v
for all w ∈ Ωf . If w1 and w2 are in Ωf then w1 + w2 ≤ v. Indeed, consider the ith component of
v: if it is 0 then the ith components of w1 and w2 must be 0, and if it is 1 then it is impossible for
the ith component of the sum to be any larger. Therefore Ωf is a subspace.

Conversely, suppose that Ωf is a proper subspace of GF (2)n and let x be any element of Ωf .
Next, we claim that if x ∈ Ωf and if y ≤ x, then y ∈ Ωf . But y ≤ x if and only if y ≥ x.

Because f is monotone, y ∈ Ωf , proving the claim.
Now let z be any element of maximal weight in Ωf . Let h be the weight of z. Since f is

monotone, there must be at least h weight 1 vectors in Ωf , by the previous claim. Suppose there
is a vector y ∈ Ωf such that y is not less than or equal to z. Then there must be at least h + 1

3 An ideal in a set U is a collection I of subsets of U such that B ∈ I and A ⊂ B implies A ∈ I.
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Figure 3. Bold font means the Boolean function takes the value 1 at that point in GF (2)4.
Regular font means the function is 0. This is another way of drawing the Hasse diagram for the
four-dimensional unit hypercube, superimposed with Example 3.4.

(distinct) weight 1 vectors in Ωf . Their sum must also be in Ωf , so z is not a maximal weight
element of Ωf . Therefore Ωf consists of all elements y of GF (2)n such that y ≤ z and Ωf consists of
all elements w such that w ≥ z (namely all the complements of those y’s). Therefore Ωf is atomic
based on z. �

Example 3.4. Here is an example of a monotone function f : GF (2)4 → GF (2) whose least
support vectors are given by

Γ = {(1, 0, 0, 0), (0, 1, 1, 0), (0, 1, 0, 1), (0, 0, 1, 1)} ⊂ GF (2)n,

illustrated in Figure 3. The algebraic normal form of f is

f(x0, x1, x2, x3) = x0x1x2 + x0x1x3 + x0x2x3 + x1x2 + x1x3 + x2x3 + x0,

but it also can be written in this factored form:

f(x0, x1, x2, x3) = 1 + (x0 + 1)(x1x2 + 1)(x1x3 + 1)(x2x3 + 1).

Note how the factors correspond to the vectors of least support. We shall see in the next theorem
below that this sort of factorization holds for all monotone functions.

This example has the property that the function f(x0, x1, x2, x3) is even (i.e., the support Ωf has
an even number of elements), yet the subfunctions f(x0, 0, x1, x2), f(x0, x1, 0, x2), f(x0, x1, x2, 0)
are all odd, but f(0, x0, x1, x2) is even.
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Here is a compact algebraic form that these monotone functions must take. We use the multi-
nomial notation xv = xv0

0 xv1
1 ...x

vn−1

n−1 .

Theorem 3.5. Let f be a monotone Boolean function whose least support vectors are given by
Γ ⊂ GF (2)n. Then

f(x) = 1 +
∏
v∈Γ

(xv + 1). (1.7)

Proof. Define a Boolean function g : GF (2)n → GF (2) such that

g(x) = 1 +
∏
v∈Γ

(xv + 1)

where Γ is the set of least support vectors for a monotone Boolean function f .
For x ∈ GF (2)n, define the subset Sx of least support vectors v ∈ Γ such that v ≤ x as

Sx = {v ∈ Γ | v ≤ x}.

We will show f = g by proving f(x) = 0 ⇔ g(x) = 0.
(⇒) Let y ∈ GF (2)n satisfy f(y) = 0. Then, y ̸∈ Ωf and Sy = ∅. Thus, for every v ∈ Γ, there

exists an i such that vi = 1 and yi = 0. Consequently, from the definition of g, we have

g(y) = 1 +
∏
v∈Γ

(yv + 1) = 1 + 1 = 0.

(⇐) The converse is exactly the reverse of the above argument. We provide details for the
convenience of the reader. Let y ∈ GF (2)n satisfy g(y) = 0. Since g(y) = 1 +

∏
v∈Γ(y

v + 1), this
means that for each v ∈ Γ, we have yv = 0. Thus, for every v ∈ Γ, there exists an i such that
vi = 1 and yi = 0. This means that y ≥ v is false for each v ∈ Γ. Since f is monotone, this implies
y /∈ Ωf , which means that f(y) = 0. �

Recall that for a given Cayley graph X, the kth element λk of the spectrum of X is given by

λk = (Hnf⃗)(b(k)) =
∑
x∈Ωf

(−1)b(k)·x

=
∑
x

∃v ∈ Γ s.t. v ≤ x

(−1)b(k)·x.

If f is monotone, we want to characterize when 0 ∈ Spectrum(X). The last expression for the
elements of the spectrum of X may help answer the following question: For which monotone
functions (if any) is the graph X singular? We can answer this question in some special cases. For
example, the following result addresses the special case of atomic monotone functions.

Theorem 3.6. Let f be a Boolean atomic monotone function. The associated Cayley graph is
singular if and only if ω is even.
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Proof. First, note that if ω is odd then (Hf)(y) ̸= 0 for all y ∈ GF (2)n for parity reasons. (This is
true for all Boolean functions f and does not even require f to be monotone.) Therefore, we may
assume ω is even.

We must show that, for some x ∈ GF (2)n, half the vectors in Ωf are orthogonal to x and half
are not. Pick any x ∈ Ωf such that x ̸= 1 = (1, 1, . . . , 1). This is possible since we assumed ω
is even. Then x ∈ Ωf and x ̸= (0, 0, . . . , 0). Since Ωf is a subspace, by the previous proposition,
x is orthogonal to exactly half the vectors in Ωf . Thus, since ω is even, the same orthogonality
property holds if we replace Ωf by Ωf . �

Recall that a strongly regular graph is a regular graph (V,E) with vertices V and common
degree c for which there are also integers d and e such that:

• every two adjacent vertices have d common neighbors,

• every two non-adjacent vertices have e common neighbors.

If f is bent then the Cayley graph of f is strongly regular having parameters d, e with d = e,
where d, e denote the number of common neighbors in the adjacent, non-adjacent cases [BCV01].

Proposition 3.7. Let f : GF (2)n → GF (2), n > 2, denote a monotone function for which
Ωf ∩ Ωf = ∅. Then f is not bent.

Proof. Suppose not. Let Γ denote the Cayley graph of f , so as noted above Γ is strongly regular
having parameters d, e with d = e. For any vertex v in Γ, let N(v) denote the neighbors (i.e.,
adjacent vertices) of v. Strongly regular implies that the cardinality

|N(v) ∩N(0)|

is independent of which vertex v ∈ Γ we select. (Here 0 denotes the vertex 0 ∈ GF (2)n.) Let
v = 1 ∈ Ωf . Then

|N(v) ∩N(0)| = |Ωf ∩ Ωf | = 0.

This implies d = e = 0, which is a contradiction (this equality, in turn, implies Ωf = ∅ by page 2
in Stanica [Sta07]). �

Corollary 3.8. For n > 2, if f is bent and monotone, then there is a v ∈ Ωf satisfying wt(v) ≤ n/2.

Let f be any even monotone function of 4 variables. By an exhaustive search using Sage, it can
be verified that such an f has some Walsh-Hadamard transform value which is equal to 0. In other
words, its Cayley graph is singular in the sense that it has 0 as an eigenvalue. In particular, such
a monotone function cannot be bent.

This suggests two questions:

• Is it true that for every even monotone function, the associated Cayley graph X is singular?

• Is it true that no monotone function in n ≥ 4 variables is bent?

The answer to the first question is no. In fact, Example 4.2 below gives a counterexample in
dimension 6. The second question is, as far as we know, open.
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4 New Boolean functions from old

We next discuss an interesting construction that led the third author to the counterexample men-
tioned above.

Let f be a monotone Boolean function on GF (2)n. Let Γ = {v1, . . . , vr} be the least support
of f . We derive a new Boolean function F on GF (2)r from f as follows. Let Ai be the atomic set
generated by vi, i.e., Ai consists of all vectors v in GF (2)n such that vi ≤ v. For x ̸= (0, 0, . . . , 0)
in GF (2)r, let Dx be the intersection of all Ai such that xi = 1. For example, if x = (1, 1, 0, . . . , 0),
then Dx = A1 ∩ A2. If x = (0, 0, . . . , 0), Dx is defined to be ∅. In fact, if A is atomic based on v
and B is atomic based on w, then A∩B is atomic based on u, where the support of u is the union
of the supports of v and w. Now we define F (x) = 0 if |Dx| is even and F (x) = 1 if |Dx| is odd.

Notice that |Dx| is always a power of 2 or 0, so F (x) = 1 if and only if |Dx| = 1, i.e., if and only
if the set Dx consists of the vector of all 1’s. If |Dx| = 1 then |Dy| = 1 for any x ≤ y. Therefore the
derived function F is also a monotone Boolean function. Note that F may be identically 0, even
though we have assumed that f is not.

We wonder if this construction of Boolean functions in GF (2)r has further implications in the
theory of monotone Boolean functions.

Example 4.1. If F is the zero function then the adjacency matrix of f has 0 as an eigenvalue. To
see this, we first note that each intersection of atomic sets is atomic (as a corollary of Proposition
3.3). Also, each atomic set with more than one element has an equal number of vectors of even
and odd weights. For any set S of vectors in GF (2)n, let S− be the vectors in S with odd weight
and let S+ be the set of vectors in S with even weight. Then |D+

x | = |D−
x | for all x if F is the zero

function. The support of f is Ωf = ∪iAi. It is easily seen that∣∣∣∣∣∩
i

A+
i

∣∣∣∣∣ =
∣∣∣∣∣∣
(∩

i

Ai

)+
∣∣∣∣∣∣ =

∣∣∣∣∣∣
(∩

i

Ai

)−
∣∣∣∣∣∣ =

∣∣∣∣∣∩
i

A−
i

∣∣∣∣∣ .
Using the inclusion-exclusion principle for the cardinality of a union of sets,

|A+
1 ∪A+

2 ∪ ... ∪A+
r | =

r∑
i=1

|A+
i | −

∑
i ̸=j

|A+
i ∩A+

j |

+
∑

i,j,k distinct

|A+
i ∩A+

j ∩A+
k |−

· · ·+ (−1)r−1|A+
1 ∩A+

2 ∩ ... ∩A+
r |

= |A−
1 ∪A−

2 ∪ ... ∪A−
r |

so that the number of even and odd weight vectors in Ωf = ∪iAi must be equal if F is the zero
function. Note that the vectors in Ωf which are orthogonal to (1, 1, ..., 1) are exactly the even weight
vectors. Now we apply Lemma 2.3 with m = 0 and x = (1, 1, ..., 1). This tells us that 0 belongs
to the spectrum of the graph of f because the number of vectors in Ωf which are orthogonal to
(1, 1, ..., 1) is ω/2.

Note that this construction can be generalized to any finite collection of nonempty subsets Ai of
GF (2)n by taking F (x) = |Ωf ∩Dx| mod 2, but the resulting Boolean function F is not necessarily
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monotone. For example, if Ai consists of all vectors whose ith component is 0, then the value of F
on the ith standard basis vector ei tells us whether the subfunction f |xi=0 is even or odd.

Constructing a function g : GF (2)n → Z with g(x) = |Dx| (i.e., the actual cardinality, not the
cardinality mod 2) provides some useful counting arguments, as shown below, which can help rule
out certain integers as eigenvalues of the spectrum of the Cayley graph of f .

Consider an atomic set A based on a vector v. If x is a vector in GF (2)n with support contained
in the support of v, then x ·y = x ·v for all y ∈ A. Otherwise, if the support of x is not contained in
the support of v, x is orthogonal to exactly half the vectors in A. Using this fact we can construct,
by some simple counting arguments, examples of monotone Boolean functions whose Cayley graphs
cannot have 0 in their spectra.

For example, suppose that f is a monotone Boolean function on GF (2)n, n ≥ 6, such that the
least support of f consists of vectors v1, v2, and v3 with |A1| = |A2| = |A3| = 4 and |Ai∩Aj | = 1 for
i ̸= j. Indeed, Ai∩Aj = {1}. Then |Ωf | = 10. For any x in GF (2)n, the number of vectors y in Ai

such that x ·y = x ·1 is either 2 or 4. Therefore the total number of vectors y in Ωf = A1∪A2∪A3

such that x ·y = x ·1 is one of 4, 6, 8, or 10. This means that the number of vectors in Ωf which are
orthogonal to x cannot be ω/2 = 5 for any x in GF (2)n. Therefore the Cayley graph of f cannot
have 0 in its spectrum by Lemma 2.3.

We show now in Example 4.2 an explicit construction of an even, monotone Boolean function
for which 0 is not an eigenvalue.

Example 4.2. Let n = 6 and let f be the monotone function whose least support is

Γ = {(1, 1, 1, 1, 0, 0), (1, 1, 0, 0, 1, 1), (0, 0, 1, 1, 1, 1)}.

Using Theorem 3.5, we obtain the compact algebraic form

f(x0, x1, x2, x3, x4, x5) = x0x1x2x3 + x0x1x4x5 + x2x3x4x5.

This function is monotone yet has no vanishing Walsh-Hadamard transform values. As with the
previous examples, we attach the file afsr.sage available from Celerier [Cel], then run the following
commands.

Sage
sage: V = GF(2) ^(6)
sage: L = [V([1,1,0,0,1,1]),V([0,0,1,1,1,1]), V([1,1,1,1,0,0])]
sage: f = monotone_from_support(L)
sage: is_monotone(f)
True

These commands simply construct a Boolean function f whose least support are the vectors in L.
Next, we compute the Walsh-Hadamard transform of this using both the method built into Sage’s
sage.crypto module, and the function in afsr.sage.

Sage
sage: f.walsh_hadamard_transform ()
(-44, -12, -12, 12, -12, 4, 4, -4, -12, 4, 4, -4, 12, -4, -4, 4, -12, 4, 4, -4, 4, 4, 4, -4, 4,

4, 4, -4, -4, -4, -4, 4, -12, 4, 4, -4, 4, 4, 4, -4, 4, 4, 4, -4, -4, -4, -4, 4, 12, -4,
-4, 4, -4, -4, -4, 4, -4, -4, -4, 4, 4, 4, 4, -4)

sage: f.algebraic_normal_form ()
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x0*x1*x2*x3 + x0*x1*x4*x5 + x2*x3*x4*x5
sage: x0,x1,x2,x3 ,x4 ,x5 = var("x0,x1,x2,x3 ,x4,x5")
sage: g = x0*x1*x2*x3 + x0*x1*x4*x5 + x2*x3*x4*x5
sage: Omega = [v for v in V if g(x0=v[0], x1=v[1], x2=v[2], x3=v[3],

x4=v[4], x5=v[5]) <>0]
sage: len(Omega)
10
sage: g = lambda x: x[0]*x[1]*x[2]*x[3] + x[0]*x[1]*x[4]*x[5] + x[2]*x[3]*x[4]*x[5]
sage: [walsh_transform(g,a) for a in V]
[44, 12, 12, -12, 12, -4, -4, 4, 12, -4, -4, 4, -12, 4, 4, -4, 12, -4, -4, 4, -4, -4, -4, 4, -4,

-4, -4, 4, 4, 4, 4, -4, 12, -4, -4, 4, -4, -4, -4, 4, -4, -4, -4, 4, 4, 4, 4, -4, -12, 4,
4, -4, 4, 4, 4, -4, 4, 4, 4, -4, -4, -4, -4, 4]

(Note: the Walsh transform method in the BooleanFunction class in Sage differs by a sign from
the standard definition.) This verifies that there are no values of the Walsh-Hadamard transform
which are 0.
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